30 research outputs found

    An optically stimulated superconducting-like phase in K3C60 far above equilibrium Tc

    Get PDF
    The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conductor K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.Comment: 40 pages, 23 figure

    Anisotropic three-dimensional magnetism in CaFe2As2

    Get PDF
    Inelastic neutron scattering measurements of the magnetic excitations in CaFe2As2 indicate that the spin wave velocity in the Fe layers is exceptionally large and similar in magnitude to the cuprates. However, the spin wave velocity perpendicular to the layers is at least half as large that in the layer, so that the magnetism is more appropriately categorized as anisotropic three-dimensional, in contrast to the two-dimensional cuprates. Exchange constants derived from band structure calculations predict spin wave velocities that are consistent with the experimental data

    Tuning fulleride electronic structure and molecular ordering via variable layer index

    Full text link
    C60 fullerides are uniquely flexible molecular materials that exhibit a rich variety of behavior, including superconductivity and magnetism in bulk compounds, novel electronic and orientational phases in thin films, and quantum transport in a single-C60 transistor. The complexity of fulleride properties stems from the existence of many competing interactions, such as electron-electron correlations, electron-vibration coupling, and intermolecular hopping. The exact role of each interaction is controversial due to the difficulty of experimentally isolating the effects of a single interaction in the intricate fulleride materials. Here we report a unique level of control of the material properties of KxC60 ultra-thin films through well-controlled atomic layer indexing and accurate doping concentrations. Using STM techniques, we observe a series of electronic and structural phase transitions as the fullerides evolve from two-dimensional monolayers to quasi-threedimensional multilayers in the early stages of layer-by-layer growth. These results demonstrate the systematic evolution of fulleride electronic structure and molecular ordering with variable KxC60 film layer index, and shed new light on creating novel molecular structures and devices.Comment: 16 pages, 4 figures, to appear in Nature Material

    Itinerant magnetic excitations in antiferromagnetic CaFe2As2

    Get PDF
    Neutron scattering measurements of the magnetic excitations in single crystals of antiferromagnetic CaFe2As2 reveal steeply dispersive and well-defined spin waves up to an energy of 100 meV. Magnetic excitations above 100 meV and up to the maximum energy of 200 meV are however broader in energy and momentum than the experimental resolution. While the low energy modes can be fit to a Heisenberg model, the total spectrum cannot be described as arising from excitations of a local moment system. Ab-initio calculations of the dynamic magnetic susceptibility suggest that the high energy behavior is dominated by the damping of spin waves by particle-hole excitations.Comment: 4 pages, 5 figure

    Reinvestigation of the intrinsic magnetic properties of (Fe1-xCox)2B alloys and crystallization behavior of ribbons

    Get PDF
    New determination of the magnetic anisotropy from single crystals of (Fe1-xCox)2B alloys are presented. The anomalous temperature dependence of the anisotropy constant is discussed using the standard Callen-Callen theory, which is shown to be insufficient to explain the experimental results. A more material specific study using first-principles calculations with disordered moments approach gives a much more consistent interpretation of the experimental data. Since the intrinsic properties of the alloys with x=0.3-0.35 are promising for permanent magnets applications, initial investigation of the extrinsic properties are described, in particular the crystallization of melt spun ribbons with Cu, Al, and Ti additions. Previous attempts at developing a significant hysteresis have been unsuccessful in this system. Our melt-spinning experiment indicates that this system shows rapid crystallization
    corecore